Brain responses to nutrients are severely impaired and not reversed by weight loss in humans with obesity: a randomized crossover study

  • Saper, C. B., Chou, T. C. & Elmquist, J. K. The need to feed: homeostatic and hedonic control of eating. Neuron 36, 199–211 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rossi, M. A. & Stuber, G. D. Overlapping brain circuits for homeostatic and hedonic feeding. Cell Metab. 27, 42–56 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • de Araujo, I. E., Schatzker, M. & Small, D. M. Rethinking food reward. Annu. Rev. Psychol. 71, 139–164 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • de Araujo, I. E. et al. Food reward in the absence of taste receptor signaling. Neuron 57, 930–941 (2008).

    Article 
    PubMed 

    Google Scholar
     

  • Sclafani, A. & Glendinning, J. I. Flavor preferences conditioned in C57BL/6 mice by intragastric carbohydrate self-infusion. Physiol. Behav. 79, 783–788 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sclafani, A. & Ackroff, K. Flavor preferences conditioned by intragastric glucose but not fructose or galactose in C57BL/6J mice. Physiol. Behav. 106, 457–461 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Han, W. et al. A neural circuit for gut-induced reward. Cell 175, 665–678 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berthoud, H. R. The vagus nerve, food intake and obesity. Regul. Pept. 149, 15–25 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fu, Z., Gilbert, E. R. & Liu, D. Regulation of insulin synthesis and secretion and pancreatic beta-cell dysfunction in diabetes. Curr. Diabetes Rev. 9, 25–53 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kreymann, B. et al. Glucagon-like peptide-1 7–36: a physiological incretin in man. Lancet 2, 1300–1304 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rindi, G. et al. Characterisation of gastric ghrelin cells in man and other mammals: studies in adult and fetal tissues. Histochem Cell Biol. 117, 511–519 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berthoud, H. R. Vagal and hormonal gut–brain communication: from satiation to satisfaction. Neurogastroenterol. Motil. 20, 64–72 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, L. et al. Sugar metabolism regulates flavor preferences and portal glucose sensing. Front Integr. Neurosci. 12, 57 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Berland, C. et al. Dietary lipids as regulators of reward processes: multimodal integration matters. Trends Endocrinol. Metab. 32, 693–705 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ren, X. et al. Nutrient selection in the absence of taste receptor signaling. J. Neurosci. 30, 8012–8023 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Thanarajah, S. E. et al. Food intake recruits orosensory and post-ingestive dopaminergic circuits to affect eating desire in humans. Cell Metab. 29, 695–706 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ferreira, J. G. et al. Regulation of fat intake in the absence of flavour signalling. J. Physiol. 590, 953–972 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tellez, L. A. et al. A gut lipid messenger links excess dietary fat to dopamine deficiency. Science 341, 800–802 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Little, T. J. et al. Mapping glucose-mediated gut-to-brain signalling pathways in humans. Neuroimage 96, 1–11 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Lassman, D. J. et al. Defining the role of cholecystokinin in the lipid-induced human brain activation matrix. Gastroenterology 138, 1514–1524 (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Jones, R. B. et al. Functional neuroimaging demonstrates that ghrelin inhibits the central nervous system response to ingested lipid. Gut 61, 1543–1551 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • van der Zwaal, E. M. et al. Striatal dopamine D2/3 receptor availability increases after long-term bariatric surgery-induced weight loss. Eur. Neuropsychopharmacol. 26, 1190–1200 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • ter Horst, K. W. et al. Insulin resistance in obesity can be reliably identified from fasting plasma insulin. Int J. Obes. 39, 1703–1709 (2015).

    Article 

    Google Scholar
     

  • Tschop, M. et al. Circulating ghrelin levels are decreased in human obesity. Diabetes 50, 707–709 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Korek, E. et al. Fasting and postprandial levels of ghrelin, leptin and insulin in lean, obese and anorexic subjects. Prz. Gastroenterol. 8, 383–389 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nelson, K. M. et al. Prediction of resting energy expenditure from fat-free mass and fat mass. Am. J. Clin. Nutr. 56, 848–856 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Matthews, D. R. et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412–419 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Flint, A. et al. Reproducibility, power and validity of visual analogue scales in assessment of appetite sensations in single test meal studies. Int. J. Obes. Relat. Metab. Disord. 24, 38–48 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ogawa, S. et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc. Natl Acad. Sci. USA 89, 5951–5955 (1992).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Booij, J. et al. Assessment of endogenous dopamine release by methylphenidate challenge using iodine-123 iodobenzamide single-photon emission tomography. Eur. J. Nucl. Med. 24, 674–677 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Berthoud, H. R., Lenard, N. R. & Shin, A. C. Food reward, hyperphagia, and obesity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 300, R1266–R1277 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rolls, E. T. The functions of the orbitofrontal cortex. Brain Cogn. 55, 11–29 (2004).

    Article 
    PubMed 

    Google Scholar
     

  • Frank, S., Kullmann, S. & Veit, R. Food-related processes in the insular cortex. Front. Hum. Neurosci. 7, 499 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goetze, O. et al. The effect of macronutrients on gastric volume responses and gastric emptying in humans: a magnetic resonance imaging study. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G11–G17 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Goldstein, N. et al. Hypothalamic detection of macronutrients via multiple gut–brain pathways. Cell Metab. 33, 676–687 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Krieger, J. P. Intestinal glucagon-like peptide-1 effects on food intake: physiological relevance and emerging mechanisms. Peptides 131, 170342 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Abbott, C. R. et al. The inhibitory effects of peripheral administration of peptide YY(3-36) and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal–brainstem–hypothalamic pathway. Brain Res. 1044, 127–131 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kastin, A. J., Akerstrom, V. & Pan, W. Interactions of glucagon-like peptide-1 (GLP-1) with the blood–brain barrier. J. Mol. Neurosci. 18, 7–14 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Orskov, C. et al. Glucagon-like peptide I receptors in the subfornical organ and the area postrema are accessible to circulating glucagon-like peptide I. Diabetes 45, 832–835 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dickson, S. L. et al. The glucagon-like peptide 1 (GLP-1) analogue, exendin-4, decreases the rewarding value of food: a new role for mesolimbic GLP-1 receptors. J. Neurosci. 32, 4812–4820 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taha, S. A. & Fields, H. L. Encoding of palatability and appetitive behaviors by distinct neuronal populations in the nucleus accumbens. J. Neurosci. 25, 1193–1202 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Baldo, B. A. & Kelley, A. E. Discrete neurochemical coding of distinguishable motivational processes: insights from nucleus accumbens control of feeding. Psychopharmacol. 191, 439–459 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Berridge, K. C. et al. The tempted brain eats: pleasure and desire circuits in obesity and eating disorders. Brain Res. 1350, 43–64 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • O’Connor, E. C. et al. Accumbal D1R neurons projecting to lateral hypothalamus authorize feeding. Neuron 88, 553–564 (2015).

    Article 
    PubMed 

    Google Scholar
     

  • Lawrence, N. S. et al. Nucleus accumbens response to food cues predicts subsequent snack consumption in women and increased body mass index in those with reduced self-control. Neuroimage 63, 415–422 (2012).

    Article 
    PubMed 

    Google Scholar
     

  • Tiedemann, L. J. et al. Central insulin modulates food valuation via mesolimbic pathways. Nat. Commun. 8, 16052 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Rodriguez, F. R. et al. An anorexic lipid mediator regulated by feeding. Nature 414, 209–212 (2001).

    Article 

    Google Scholar
     

  • Schwartz, G. J. et al. The lipid messenger OEA links dietary fat intake to satiety. Cell Metab. 8, 281–288 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beutler, L. R. et al. Obesity causes selective and long-lasting desensitization of AgRP neurons to dietary fat. eLife 9, e55909 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gropp, E. et al. Agouti-related peptide-expressing neurons are mandatory for feeding. Nat. Neurosci. 8, 1289–1291 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reichenbach, A. et al. Metabolic sensing in AgRP neurons integrates homeostatic state with dopamine signalling in the striatum. eLife 11, e72668 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hahn, T. M. et al. Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nat. Neurosci. 1, 271–272 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Aponte, Y., Atasoy, D. & Sternson, S. M. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat. Neurosci. 14, 351–355 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Su, Z., Alhadeff, A. L. & Betley, J. N. Nutritive, post-ingestive signals are the primary regulators of AgRP neuron activity. Cell Rep. 21, 2724–2736 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Small, D. M. et al. Changes in brain activity related to eating chocolate: from pleasure to aversion. Brain 124, 1720–1733 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hall, K. D. & Kahan, S. Maintenance of lost weight and long-term management of obesity. Med. Clin. North Am. 102, 183–197 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Grove, J. C. R. et al. Dopamine subsystems that track internal states. Nature 608, 374–380 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Esteban, O. et al. Analysis of task-based functional MRI data preprocessed with fMRIPrep. Nat. Protoc. 15, 2186–2202 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Esteban, O. et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat. Methods 16, 111–116 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Woolrich, M. W. et al. Temporal autocorrelation in univariate linear modeling of fMRI data. Neuroimage 14, 1370–1386 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Winkler, A. M. et al. Permutation inference for the general linear model. Neuroimage 92, 381–397 (2014).

    Article 
    PubMed 

    Google Scholar
     

  • Winkler, A. M. et al. Faster permutation inference in brain imaging. Neuroimage 141, 502–516 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Winkler, A. M. et al. Non-parametric combination and related permutation tests for neuroimaging. Hum. Brain Mapp. 37, 1486–1511 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Frazier, J. A. et al. Structural brain magnetic resonance imaging of limbic and thalamic volumes in pediatric bipolar disorder. Am. J. Psychiatry 162, 1256–1265 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Goldstein, J. M. et al. Hypothalamic abnormalities in schizophrenia: sex effects and genetic vulnerability. Biol. Psychiatry 61, 935–945 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Makris, N. et al. Decreased volume of left and total anterior insular lobule in schizophrenia. Schizophr. Res. 83, 155–171 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31, 968–980 (2006).

    Article 
    PubMed 

    Google Scholar
     

  • Cremers, H. R., Wager, T. D. & Yarkoni, T. The relation between statistical power and inference in fMRI. PLoS ONE 12, e0184923 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adriaanse, S. M. et al. Clinical evaluation of [123I]FP-CIT SPECT scans on the novel brain-dedicated InSPira HD SPECT system: a head-to-head comparison. EJNMMI Res. 8, 85 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wolnerhanssen, B. K. et al. Dissociable behavioral, physiological and neural effects of acute glucose and fructose ingestion: a pilot study. PLoS ONE 10, e0130280 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lean, M. E. & Malkova, D. Altered gut and adipose tissue hormones in overweight and obese individuals: cause or consequence? Int. J. Obes. 40, 622–632 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Thirion, B. et al. Analysis of a large fMRI cohort: statistical and methodological issues for group analyses. Neuroimage 35, 105–120 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Grabner, G. et al. Symmetric atlasing and model based segmentation: an application to the hippocampus in older adults. Med. Image Comput. Comput. Assist. Interv. 9, 58–66 (2006).

    PubMed 

    Google Scholar
     

  • link